ARTICLE

PIONEERING ORAL INSULIN FORMULATIONS AND DELIVERY TECHNIQUES A REVIEW

01 Pages : 1-15

http://dx.doi.org/10.31703/gpsr.2024(IX-III).01      10.31703/gpsr.2024(IX-III).01      Published : Sep 2024

Pioneering Oral Insulin Formulations and Delivery Techniques: A Review

    The development of oral insulin presents significant promise for diabetes treatment, mitigating peripheral hyperinsulinemia, weight gain, and hypoglycemia while enhancing patient convenience and facilitating rapid insulinization of the liver. Effective oral insulin products are crucial for early intensive insulin therapy, which ensures tight glycaemic control and delays diabetes complications. However, despite the need, oral insulin has faced many challenges, and past technologies have had limited success. Repeated insulin injections can result in local hypertrophy over time generating attention to user-friendly oral insulin delivery systems that are not invasive to the body and copy the natural pathway. This review article examines New methods for oral insulin delivery that have shown promise, using techniques like complexation, hydrogels, and nanoparticles to boost effectiveness, though they still trail injectable insulin. Further studies will help determine how well oral insulin works at various doses and inform the development of competing formulations.

    Oral Insulin; Diabetes-Mellitus; Noval Insulin Preparation; Insulin Formulation Technology; Bioavailability
    (1) Savera Saghir
    Graduate Scholar, Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan.
    (2) Mobina Hameed
    Graduate Scholar, Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan.
    (3) Mahnoor Tariq Kiani
    Graduate Scholar, Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan.
    (4) Sheema Fazal
    Graduate Scholar, Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan.
    (5) Madiha Hafiz
    Graduate Scholar, Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan.
  • Almeida, C., Pedro, A. Q., Tavares, A. P. M., Neves, M. C., & Freire, M. G. (2023). Ionic-liquid-based approaches to improve biopharmaceuticals downstream processing and formulation. Frontiers in Bioengineering and Biotechnology, 11. https://doi.org/10.3389/fbioe.2023.1037436

  • Elkordy, A. A., Parveen, A., & Haj-Ahmad, R. (2023). Route of monoclonal antibodies administration. In Elsevier eBooks (pp. 209–258). https://doi.org/10.1016/b978-0-12-823365-8.00005-0
  • Taraghdari, Z. B., Imani, R., & Mohabatpour, F. (2019). A review on Bioengineering Approaches to Insulin Delivery: A Pharmaceutical and Engineering perspective. Macromolecular Bioscience, 19(4). https://doi.org/10.1002/mabi.201800458
  • Bala, R., Sindhu, R. K., Kaundle, B., Madaan, R., & Cavalu, S. (2021). The prospective of liquid crystals in nano formulations for drug delivery systems. Journal of Molecular Structure, 1245, 131117. https://doi.org/10.1016/j.molstruc.2021.131117
  • Banerjee, A., Chen, R., Arafin, S., & Mitragotri, S. (2019). Intestinal iontophoresis from mucoadhesive patches: a strategy for oral delivery. Journal of Controlled Release, 297, 71–78. https://doi.org/10.1016/j.jconrel.2019.01.037
  • Banerjee, A., Ibsen, K., Brown, T., Chen, R., Agatemor, C., & Mitragotri, S. (2018). Ionic liquids for oral insulin delivery. Proceedings of the National Academy of Sciences, 115(28), 7296–7301. https://doi.org/10.1073/pnas.1722338115
  • Benyettou, F., & K, N. (2021). In vivo oral insulin delivery via covalent organic frameworks. Chemical Science, 12(17), 12345-12356.
  • Boushra, M., Tous, S., Fetih, G., Xue, H., & Wong, H. (2019). Development of bi-polymer lipid hybrid nanocarrier (BLN) to improve the entrapment and stability of insulin for efficient oral delivery. Journal of Drug Delivery Science and Technology, 49, 632–641. https://doi.org/10.1016/j.jddst.2019.01.007
  • Chellathurai, M. S., Yong, C. L., Sofian, Z. M., Sahudin, S., Hasim, N. B. M., & Mahmood, S. (2023). Self-assembled chitosan-insulin oral nanoparticles — A critical perspective review. International Journal of Biological Macromolecules, 243, 125125. https://doi.org/10.1016/j.ijbiomac.2023.125125
  • Chen, C. C., Baikoghli, M. A., & Cheng, R. H. (2018). Tissue targeted nanocapsids for oral insulin delivery via drink. Pharmaceutical Patent Analyst, 7(3), 121–127. https://doi.org/10.4155/ppa-2017-0041
  • Chen, X., Ren, Y., Feng, Y., Xu, X., Tan, H., & Li, J. (2019). Cp1-11 peptide/insulin complex loaded pH-responsive nanoparticles with enhanced oral bioactivity. International Journal of Pharmaceutics, 562, 23–30. https://doi.org/10.1016/j.ijpharm.2019.03.020
  • Chen, Y., Li, P., Modica, J. A., Drout, R. J., & Farha, O. K. (2018). Acid-Resistant Mesoporous Metal–Organic Framework toward Oral Insulin Delivery: Protein Encapsulation, Protection, and Release. Journal of the American Chemical Society, 140(17), 5678–5681. https://doi.org/10.1021/jacs.8b02089
  • Cordery, S. F., Husbands, S. M., Bailey, C. P., Guy, R. H., & Delgado-Charro, M. B. (2019). Simultaneous transdermal delivery of buprenorphine hydrochloride and naltrexone hydrochloride by iontophoresis. Molecular Pharmaceutics, 16(6), 2808–2816. https://doi.org/10.1021/acs.molpharmaceut.9b00337
  • De Lemos Vasconcelos Silva, E., De Jesus Oliveira, A. C., Patriota, Y. B. G., Ribeiro, A. J., Veiga, F., Hallwass, F., Silva-Filho, E. C., Da Silva, D. A., De La Roca Soares, M. F., Wanderley, A. G., & Soares-Sobrinho, J. L. (2018). Solvent-free synthesis of acetylated cashew gum for oral delivery system of insulin. Carbohydrate Polymers, 207, 601–608. https://doi.org/10.1016/j.carbpol.2018.11.071
  • Leithy, E. S. E., Abdel-Bar, H. M., & Ali, R. A. (2019). Folate-chitosan nanoparticles triggered insulin cellular uptake and improved in vivo hypoglycemic activity. International Journal of Pharmaceutics, 571, 118708. 
    https://doi.org/10.1016/j.ijpharm.2019.118708
  • Fukuoka, Y., Khafagy, E., Goto, T., Kamei, N., Takayama, K., Peppas, N. A., & Takeda-Morishita, M. (2018). Combination Strategy with Complexation Hydrogels and Cell-Penetrating Peptides for Oral Delivery of Insulin. Biological and Pharmaceutical Bulletin, 41(5), 811–814. https://doi.org/10.1248/bpb.b17-00951
  • Gelperina, S., Kisich, K., Iseman, M. D., & Heifets, L. (2005). The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. American Journal of Respiratory and Critical Care Medicine, 172(12), 1487–1490. https://doi.org/10.1164/rccm.200504-613pp
  • Golshani, S., Vatanara, A., & Amin, M. (2022). Recent advances in oral mucoadhesive drug delivery. Journal of Pharmacy & Pharmaceutical Sciences, 25, 201–217. https://doi.org/10.18433/jpps32705
  • Gong, Y., Mohd, S., Wu, S., Liu, S., Pei, Y., & Luo, X. (2021). PH-Responsive Cellulose-Based microspheres designed as an effective oral delivery system for insulin. ACS Omega, 6(4), 2734–2741. https://doi.org/10.1021/acsomega.0c04946
  • Goo, Y. T., Lee, S., Choi, J. Y., Kim, M. S., Sin, G. H., Hong, S. H., Kim, C. H., Song, S. H., & Choi, Y. W. (2022). Enhanced oral absorption of insulin: hydrophobic ion pairing and a self-microemulsifying drug delivery system using a D-optimal mixture design. Drug Delivery, 29(1), 2831–2845. https://doi.org/10.1080/10717544.2022.2118399
  • Guo, F., Ouyang, T., Peng, T., Zhang, X., Xie, B., Yang, X., Liang, D., & Zhong, H. (2019). Enhanced oral absorption of insulin using colon-specific nanoparticles co-modified with amphiphilic chitosan derivatives and cell-penetrating peptides. Biomaterials Science, 7(4), 1493–1506. https://doi.org/10.1039/c8bm01485j
  • Hatakeyama, H., Akita, H., & Harashima, H. (2013). The Polyethyleneglycol Dilemma: Advantage and Disadvantage of PEGylation of liposomes for systemic genes and nucleic acids delivery to tumors. Biological and Pharmaceutical Bulletin, 36(6), 892–899. https://doi.org/10.1248/bpb.b13-00059
  • Homayun, B., Lin, X., & Choi, H. (2019). Challenges and recent progress in oral drug delivery systems for biopharmaceuticals. Pharmaceutics, 11(3), 129. https://doi.org/10.3390/pharmaceutics11030129
  • Ibie, C., Knott, R., & Thompson, C. (2018). Complexation of novel thiomers and insulin to protect against in vitro enzymatic degradation – towards oral insulin delivery. Drug Development and Industrial Pharmacy, 45(1), 67–75. https://doi.org/10.1080/03639045.2018.1517776
  • Jacob, S., Nair, A. B., Shah, J., Sreeharsha, N., Gupta, S., & Shinu, P. (2021). Emerging role of hydrogels in drug delivery systems, tissue engineering and wound management. Pharmaceutics, 13(3), 357. https://doi.org/10.3390/pharmaceutics13030357
  • James, H. P., John, R., Alex, A., & Anoop, K. (2014). Smart polymers for the controlled delivery of drugs – a concise overview. Acta Pharmaceutica Sinica B, 4(2), 120–127. https://doi.org/10.1016/j.apsb.2014.02.005
  • Jamwal, S., Ram, B., Ranote, S., Dharela, R., & Chauhan, G. S. (2018). New glucose oxidase-immobilized stimuli-responsive dextran nanoparticles for insulin delivery. International Journal of Biological Macromolecules, 123, 968–978. https://doi.org/10.1016/j.ijbiomac.2018.11.147
  • Malik, M. S. J. K. (2022). Novel Drug Delivery System Microsphere: A Review. SAR Journal of Anatomy and Physiology, 3(2), 9–16. https://doi.org/10.36346/sarjap.2022.v03i02.001
  • Berton, P., & Shamshina, J. L. (2023). Ionic Liquids as Tools to Incorporate Pharmaceutical Ingredients into Biopolymer-Based Drug Delivery Systems. Pharmaceuticals, 16(2), 272. https://doi.org/10.3390/ph16020272
  • Kalaydina, R. V., & B, K. (2018). Recent advances in “smart” delivery systems for extended drug release in cancer therapy. International Journal of Nanomedicine, 13, 123-134.
  • Karmakar, S., Bhowmik, M., Laha, B., & Manna, S. (2023). Recent advancements on novel approaches of insulin delivery. Medicine in Novel Technology and Devices, 19, 100253. https://doi.org/10.1016/j.medntd.2023.100253
  • Boddupalli, B., Mohammed, Z., Nath, R., & Banji, D. (2010). Mucoadhesive drug delivery system: An overview. Journal of Advanced Pharmaceutical Technology & Research, 1(4), 381. https://doi.org/10.4103/0110-5558.76436
  • Li, Bx., Lv, J., Zhang, X., Zhang, C., Guo, S., Ma, R., Wang, H., & Zhang, Y. (2021). Hypoglycemic effect of insulin-loaded hydrogel-nanogel composite on streptozotocin-induced diabetic rats. PubMed, 76(8), 364–371. https://doi.org/10.1691/ph.2021.1344
  • Liu, C., Kou, Y., Zhang, X., Dong, W., Cheng, H., & Mao, S. (2018). Enhanced oral insulin delivery via surface hydrophilic modification of chitosan copolymer based self-assembly polyelectrolyte nanocomplex. International Journal of Pharmaceutics, 554, 36–47. https://doi.org/10.1016/j.ijpharm.2018.10.068
  • Liu, G., He, S., Ding, Y., Chen, C., Cai, Q., & Zhou, W. (2021). Multivesicular liposomes for Glucose-Responsive Insulin delivery. Pharmaceutics, 14(1), 21. https://doi.org/10.3390/pharmaceutics14010021
  • Lopes, M., Simões, S., Veiga, F., Seiça, R., & Ribeiro, A. (2015). Why most oral insulin formulations do not reach clinical trials. Therapeutic Delivery, 6(8), 973–987. https://doi.org/10.4155/tde.15.47
  • Mahajan, P., & K, A. (2013). Mucoadhesive drug delivery system: A review. International Journal of Drug Development & Research, 5(1), 1-10.
  • Balasubramanian, S., Sampath, M., Perumal, N., Pandiyan, V., & Webster, T. J. (2015). Novel PLGA-based nanoparticles for the oral delivery of insulin. International Journal of Nanomedicine, 2207. https://doi.org/10.2147/ijn.s67947
  • Mansoor, S., Kondiah, P. P. D., & Choonara, Y. E. (2021). Advanced hydrogels for the controlled delivery of insulin. Pharmaceutics, 13(12), 2113. https://doi.org/10.3390/pharmaceutics13122113
  • Lee, M. (2020). Liposomes for Enhanced Bioavailability of Water-Insoluble Drugs: In Vivo evidence and Recent Approaches. Pharmaceutics, 12(3), 264. https://doi.org/10.3390/pharmaceutics12030264
  • Mohanty, A. R., Ravikumar, A., & Peppas, N. A. (2022). Recent advances in glucose-responsive insulin delivery systems: novel hydrogels and future applications. Regenerative Biomaterials, 9. https://doi.org/10.1093/rb/rbac056
  • Mumuni, A. M., Tenderwealth, C. J., Adedokun, O. M., Kenechukwu, F. C., Youngson, C. D., & Kenneth, C. O. (2017). Microspheres of insulin-Eudragit complex: Formulation, characterization and in vivo studies. African Journal of Pharmacy and Pharmacology, 11(29), 327–341. https://doi.org/10.5897/ajpp2017.4796
  • Morishita, M., Goto, T., Nakamura, K., Lowman, A. M., Takayama, K., & Peppas, N. A. (2005). Novel oral insulin delivery systems based on complexation polymer hydrogels: Single and multiple administration studies in type 1 and 2 diabetic rats. Journal of Controlled Release, 110(3), 587–594. https://doi.org/10.1016/j.jconrel.2005.10.029
  • Mudassir, J., Darwis, Y., Muhamad, S., & Khan, A. A. (2019). <p>Self-assembled insulin and nanogels polyelectrolyte complex (Ins/NGs-PEC) for oral insulin delivery: characterization, lyophilization and in-vivo evaluation</p> International Journal of Nanomedicine, Volume 14, 4895–4909. https://doi.org/10.2147/ijn.s199507
  • Mudassir, J., Raza, A., Khan, M. A., Hameed, H., Shazly, G. A., Irfan, A., Rana, S. J., Abbas, K., Arshad, M. S., Muhammad, S., & Jardan, Y. a. B. (2023). Design and evaluation of hydrophobic ion paired insulin loaded Self Micro-Emulsifying drug delivery System for oral delivery. Pharmaceutics, 15(7), 1973. https://doi.org/10.3390/pharmaceutics15071973
  • Mukhopadhyay, P., & Kundu, P. P. (2019). Stimuli-responsive polymers for oral insulin delivery. In A. S. H. Makhlouf & N. Y. Abu-Thabit (Eds.), Stimuli responsive polymeric nanocarriers for drug delivery applications (pp. 525-546). Springer.
  • Munnangi, S. R., Youssef, A. a. A., Narala, N., Lakkala, P., Narala, S., Vemula, S. K., & Repka, M. (2023). Drug complexes: Perspective from Academic Research and Pharmaceutical Market. Pharmaceutical Research, 40(6), 1519–1540. https://doi.org/10.1007/s11095-023-03517-w
  • Olorunsola, E. O., & A, M. (2021). Advances in the science and technology of insulin delivery: A review. Journal of Applied Pharmaceutical Science, 11(5), 184–191.
  • Olorunsola, E. O., Davies, K. G., Ibiang, K. P., Esukpsa, P. C., Uwaechi, E. G., & Ahsan, F. (2022). Prosochit®-based nanoparticulate system of insulin for oral delivery: design, formulation, and characterization. Journal of Applied Pharmaceutical Science. https://doi.org/10.7324/japs.2023.90862
  • Pratap-Singh, A., Guo, Y., Baldelli, A., & Singh, A. (2023). Concept for a Unidirectional Release Mucoadhesive Buccal Tablet for Oral Delivery of Antidiabetic Peptide Drugs Such as Insulin, Glucagon-like Peptide 1 (GLP-1), and their Analogs. Pharmaceutics, 15(9), 2265. https://doi.org/10.3390/pharmaceutics15092265
  • Qi, X., Yuan, Y., Zhang, J., Bulte, J. W. M., & Dong, W. (2018). Oral administration of Salecan-Based hydrogels for controlled insulin delivery. Journal of Agricultural and Food Chemistry, 66(40), 10479–10489. https://doi.org/10.1021/acs.jafc.8b02879
  • Rehmani, S., McLaughlin, C. M., Eltaher, H. M., Moffett, R. C., Flatt, P. R., & Dixon, J. E. (2023). Orally-delivered insulin-peptide nanocomplexes enhance transcytosis from cellular depots and improve diabetic blood glucose control. Journal of Controlled Release, 360, 93–109. https://doi.org/10.1016/j.jconrel.2023.06.006
  • Reix, N., Parat, A., Seyfritz, E., Van Der Werf, R., Epure, V., Ebel, N., Danicher, L., Marchioni, E., Jeandidier, N., Pinget, M., Frère, Y., & Sigrist, S. (2012). In vitro uptake evaluation in Caco-2 cells and in vivo results in diabetic rats of insulin-loaded PLGA nanoparticles. International Journal of Pharmaceutics, 437(1–2), 213–220. https://doi.org/10.1016/j.ijpharm.2012.08.024
  • Sahni, J., & R, S. (2008). Design and in vitro characterization of bucco-adhesive drug delivery system of insulin. Indian Journal of Pharmaceutical Sciences, 70(4), 512-516. https://doi.org/10.4103/0250-474X.40333
  • Salar, S., Jafari, M., Kaboli, S. F., & Mehrnejad, F. (2018). The role of intermolecular interactions on the encapsulation of human insulin into the chitosan and cholesterol-grafted chitosan polymers. Carbohydrate Polymers, 208, 345–355. https://doi.org/10.1016/j.carbpol.2018.12.083
  • Seyam, S., Nordin, N. A., & Alfatama, M. (2020). Recent progress of Chitosan and Chitosan Derivatives-Based Nanoparticles: Pharmaceutical Perspectives of oral insulin delivery. Pharmaceuticals, 13(10), 307. https://doi.org/10.3390/ph13100307
  • Shukla, M. K., Tiwari, H., Verma, R., Dong, W., Azizov, S., Kumar, B., Pandey, S., & Kumar, D. (2023). Role and recent advancements of ionic liquids in drug delivery systems. Pharmaceutics, 15(2), 702. https://doi.org/10.3390/pharmaceutics15020702

  • Prusty, A. K., & Sahu, S. K. (2013). Development and evaluation of insulin incorporated nanoparticles for oral administration. ISRN Nanotechnology, 2013, 1–6. https://doi.org/10.1155/2013/591751
  • George, J., & N, S. S. (2015). Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnology Science and Applications, 45. https://doi.org/10.2147/nsa.s64386
  • Son, G., Lee, B., & Cho, C. (2017). Mechanisms of drug release from advanced drug formulations such as polymeric-based drug-delivery systems and lipid nanoparticles. Journal of Pharmaceutical Investigation, 47(4), 287–296. https://doi.org/10.1007/s40005-017-0320-1
  • Strathmann, S. C., Murphy, M. A., Goeckner, B. A., Carter, P. W., & Green, J. D. (2009). Forces between insulin microspheres and polymers surfaces for a dry powder inhaler. International Journal of Pharmaceutics, 372(1–2), 147–153. https://doi.org/10.1016/j.ijpharm.2009.01.004
  • Thang, N. H., Chien, T. B., & Cuong, D. X. (2023). Polymer-Based Hydrogels Applied in Drug Delivery: An Overview. Gels, 9(7), 523. https://doi.org/10.3390/gels9070523
  • Tsai, L., Chen, C., Lin, C., Ho, Y., & Mi, F. (2018). Development of mutlifunctional nanoparticles self-assembled from trimethyl chitosan and fucoidan for enhanced oral delivery of insulin. International Journal of Biological Macromolecules, 126, 141–150. https://doi.org/10.1016/j.ijbiomac.2018.12.182
  • Urimi, D., Agrawal, A. K., Kushwah, V., & Jain, S. (2019). Polyglutamic acid functionalization of chitosan nanoparticles enhances the therapeutic efficacy of insulin following oral administration. AAPS PharmSciTech, 20(3). https://doi.org/10.1208/s12249-019-1330-2
  • Veloso, S. R. S., Azevedo, A. G., Teixeira, P. F., & Fernandes, C. B. P. (2023). Cellulose nanocrystal (CNC) gels: a review. Gels, 9(7), 574. https://doi.org/10.3390/gels9070574
  • Wang, A., Yang, T., Fan, W., Yang, Y., Zhu, Q., Guo, S., Zhu, C., Yuan, Y., Zhang, T., & Gan, Y. (2018). Protein corona liposomes achieve efficient oral insulin delivery by overcoming mucus and epithelial barriers. Advanced Healthcare Materials, 8(12). https://doi.org/10.1002/adhm.201801123
  • Wang, T., & S, L. (2020). “Oil-soluble” reversed lipid nanoparticles for oral insulin delivery. Journal of Nanobiotechnology, 18, Article 98.
  • Wong, C. Y., Al-Salami, H., & Dass, C. R. (2017). Microparticles, microcapsules and microspheres: A review of recent developments and prospects for oral delivery of insulin. International Journal of Pharmaceutics, 537(1–2), 223–244. https://doi.org/10.1016/j.ijpharm.2017.12.036
  • Wu, H., Nan, J., Yang, L., Park, H. J., & Li, J. (2022). Insulin-loaded liposomes packaged in alginate hydrogels promote the oral bioavailability of insulin. Journal of Controlled Release, 353, 51–62. https://doi.org/10.1016/j.jconrel.2022.11.032
  • Xi, Z., Ahmad, E., Zhang, W., Li, J., Wang, A., Faridoon, Wang, N., Zhu, C., Huang, W., Xu, L., Yu, M., & Gan, Y. (2021). Dual-modified nanoparticles overcome sequential absorption barriers for oral insulin delivery. Journal of Controlled Release, 342, 1–13. https://doi.org/10.1016/j.jconrel.2021.11.045
  • Xiao, Y., Tang, Z., Huang, X., Joseph, J., Chen, W., Liu, C., Zhou, J., Kong, N., Joshi, N., Du, J., & Tao, W. (2021). Glucose-responsive oral insulin delivery platform for one treatment a day in diabetes. Matter, 4(10), 3269–3285. https://doi.org/10.1016/j.matt.2021.08.011
  • Xu, Y., Zheng, Y., Wu, L., Zhu, X., Zhang, Z., & Huang, Y. (2018). Novel Solid Lipid Nanoparticle with Endosomal Escape Function for Oral Delivery of Insulin. ACS Applied Materials & Interfaces, 10(11), 9315–9324. https://doi.org/10.1021/acsami.8b00507
  • Yin, R., He, J., Bai, M., Huang, C., Wang, K., Zhang, H., Yang, S., & Zhang, W. (2018). Engineering synthetic artificial pancreas using chitosan hydrogels integrated with glucose-responsive microspheres for insulin delivery. Materials Science and Engineering C, 96, 374–382. https://doi.org/10.1016/j.msec.2018.11.032
    Google Scholar Worldcat Fulltext
  • Zhang, H., Wang, W., Li, H., Peng, Y., & Zhang, Z. (2017). Microspheres for the oral delivery of insulin: preparation, evaluation and hypoglycaemic effect in streptozotocin-induced diabetic rats. Drug Development and Industrial Pharmacy, 44(1), 109–115. https://doi.org/10.1080/03639045.2017.1386197
  • Zhang, T., Tang, J. Z., Fei, X., Li, Y., Song, Y., Qian, Z., & Peng, Q. (2020). Can nanoparticles and nano‒protein interactions bring a bright future for insulin delivery? Acta Pharmaceutica Sinica B, 11(3), 651–667. https://doi.org/10.1016/j.apsb.2020.08.016
  • Zou, J., Wei, G., Xiong, C., Yu, Y., Li, S., Hu, L., Ma, S., & Tian, J. (2022). Efficient oral insulin delivery enabled by transferrin-coated acid-resistant metal-organic framework nanoparticles. Science Advances, 8(8). https://doi.org/10.1126/sciadv.abm4677

Cite this article

    APA : Saghir, S., Hameed, M., & Kiani, M. T. (2024). Pioneering Oral Insulin Formulations and Delivery Techniques: A Review. Global Pharmaceutical Sciences Review, IX(III), 1-15. https://doi.org/10.31703/gpsr.2024(IX-III).01
    CHICAGO : Saghir, Savera, Mobina Hameed, and Mahnoor Tariq Kiani. 2024. "Pioneering Oral Insulin Formulations and Delivery Techniques: A Review." Global Pharmaceutical Sciences Review, IX (III): 1-15 doi: 10.31703/gpsr.2024(IX-III).01
    HARVARD : SAGHIR, S., HAMEED, M. & KIANI, M. T. 2024. Pioneering Oral Insulin Formulations and Delivery Techniques: A Review. Global Pharmaceutical Sciences Review, IX, 1-15.
    MHRA : Saghir, Savera, Mobina Hameed, and Mahnoor Tariq Kiani. 2024. "Pioneering Oral Insulin Formulations and Delivery Techniques: A Review." Global Pharmaceutical Sciences Review, IX: 1-15
    MLA : Saghir, Savera, Mobina Hameed, and Mahnoor Tariq Kiani. "Pioneering Oral Insulin Formulations and Delivery Techniques: A Review." Global Pharmaceutical Sciences Review, IX.III (2024): 1-15 Print.
    OXFORD : Saghir, Savera, Hameed, Mobina, and Kiani, Mahnoor Tariq (2024), "Pioneering Oral Insulin Formulations and Delivery Techniques: A Review", Global Pharmaceutical Sciences Review, IX (III), 1-15
    TURABIAN : Saghir, Savera, Mobina Hameed, and Mahnoor Tariq Kiani. "Pioneering Oral Insulin Formulations and Delivery Techniques: A Review." Global Pharmaceutical Sciences Review IX, no. III (2024): 1-15. https://doi.org/10.31703/gpsr.2024(IX-III).01