ARTICLE

NANOTECHNOLOGY A NEW HOPE FOR THE CURE OF OSTEOARTHRITIS OSTEOPOROSIS AND RHEUMATOID ARTHRITIS

04 Pages : 25-39

http://dx.doi.org/10.31703/gpsr.2020(V-I).04      10.31703/gpsr.2020(V-I).04      Published : Dec 2020

Nanotechnology: A New Hope for the Cure of Osteoarthritis, Osteoporosis and Rheumatoid Arthritis

    Bone and cartilage diseases especially osteoporosis, osteoarthritis and rheumatoid arthritis are rapidly prevailing both in men and women particularly due to increase in life expectancies. Different treatments are being proposed using conventional drugs and their modifications. But the side effects associated with such drugs and difficulty in treatment strategies due to multifactorial nature of such diseases and difficulty in drug delivery led the researchers towards the development of more advanced technologies for the treatment purpose. Nanotechnology is a promising strategy for treating such diseases that suppresses the progression of such diseases providing causal treatment. In this review, we will summarize the recent nano-based targeted and non-targeted delivery systems using various types of nanoparticles, nanogels, nanocomplexes, nanocarriers, hydrogels etc. for the efficient delivery of drugs and other therapeutic agents like mRNA, genes, insulin-growth factors etc. Moreover, role of nanoparticles for bone and cartilage repair in tissue engineering will also be discussed.

    Bone Repair, Nanoparticle, Nanotechnology, Osteoarthritis, Osteoporosis, Rheumatoid Arthritis, Tissue Engineering
    (1) Fariah Qaiser
    Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
    (2) Muhammad Ibrahim
    Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
    (3) Rabia Mazhar
    Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
    (4) Farhan Sohail
    Associate Professor, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Punjab, Pakistan.
  • Abdal Dayem, A., Lee, S. B., & Cho, S. G. (2018). The impact of metallic nanoparticles on stem cell proliferation and differentiation. Nanomaterials, 8(10), 761.
  • Ain, Q., Zeeshan, M., Khan, S., & Ali, H. (2019). Biomimetic hydroxyapatite as potential polymeric nanocarrier for the treatment of rheumatoid arthritis. Journal of Biomedical Materials Research Part A, 107(12), 2595-2600.
  • Bajpayee, A. G., Quadir, M. A., Hammond, P. T., & Grodzinsky, A. J. (2016). Charge based intra- cartilage delivery of single dose dexamethasone using Avidin nano-carriers suppresses cytokine- induced catabolism long term. Osteoarthritis and cartilage, 24(1), 71-81.
  • Barry, M., Pearce, H., Cross, L., Tatullo, M., & Gaharwar, A. K. (2016). Advances in Nanotechnology for the Treatment of Osteoporosis. Current osteoporosis reports, 14(3), 87-94.
  • Bishnoi, M., Jain, A., Hurkat, P., & Jain, S. K. (2016). Chondroitin sulphate: a focus on osteoarthritis. Glycoconjugate journal, 33(5), 693-705.
  • Bottini, M., Bhattacharya, K., Fadeel, B., Magrini, A., Bottini, N., & Rosato, N. (2016). Nanodrugs to target articular cartilage: an emerging platform for osteoarthritis therapy. Nanomedicine: Nanotechnology, Biology and Medicine, 12(2), 255-268.
  • Brown, S., Kumar, S., & Sharma, B. (2019). Intra- articular targeting of nanomaterials for the treatment of osteoarthritis. Acta Biomaterialia, 93, 239-257.
  • Burmester, G. R., & Pope, J. E. (2017). Novel treatment strategies in rheumatoid arthritis. The Lancet, 389(10086), 2338-2348
  • Chen, M., Daddy JC, K. A., Xiao, Y., Ping, Q., & Zong, L. (2017). Advanced nanomedicine for rheumatoid arthritis treatment: focus on active targeting.
  • Chen, Z., Chen, J., Wu, L., Li, W., Chen, J., Cheng, H., & Cai, B. (2013). Hyaluronic acid-coated bovine serum albumin nanoparticles loaded with brucine as selective nanovectors for intra- articular injection. International journal of nanomedicine, 8, 3843.
  • Cheng, Z., Landish, B., Chi, Z., Nannan, C., Jingyu, D., Sen, L., & Xiangjin, L. (2018). 3D printing hydrogel with graphene oxide is functional in cartilage protection by influencing the signal pathway of Rank/Rankl/OPG. Materials Science and Engineering: C, 82, 244-252.
  • Cho, H., Stuart, J. M., Magid, R., Danila, D. C., Hunsaker, T., Pinkhassik, E., & Hasty, K. A. (2014). Theranostic immunoliposomes for osteoarthritis. Nanomedicine: Nanotechnology, Biology and Medicine, 10(3), 619-627.
  • Chowdhury, A., Kunjiappan, S., Panneerselvam, T., Somasundaram, B., & Bhattacharjee, C. (2017). Nanotechnology and nanocarrier-based approaches on treatment of degenerative diseases. International nano letters, 7(2), 91- 122.
  • Chuang, S. Y., Lin, C. H., Huang, T. H., & Fang, J. Y. (2018). Lipid-based nanoparticles as a potential delivery approach in the treatment of rheumatoid arthritis. Nanomaterials, 8(1), 42.
  • Dolati, S., Sadreddini, S., Rostamzadeh, D., Ahmadi, M., Jadidi-Niaragh, F., & Yousefi, M. (2016). Utilization of nanoparticle technology in rheumatoid arthritis treatment. Biomedicine & pharmacotherapy, 80, 30-41.
  • Dubey, K. A., Chaudhari, C. V., Bhardwaj, Y. K., & Varshney, L. (2017). Polymers, blends and nanocomposites for implants, scaffolds, and controlled drug release applications. In Advances in Biomaterials for Biomedical Applications (pp. 1-44). Springer, Singapore.
  • Eichaker, L. R., Cho, H., Duvall, C. L., Werfel, T. A., & Hasty, K. A. (2014). Future nanomedicine for the diagnosis and treatment of osteoarthritis. Nanomedicine, 9(14), 2203-2215.
  • Evans, C. H., & Huard, J. (2015). Gene therapy approaches to regenerating the musculoskeletal system. Nature Reviews Rheumatology, 11(4), 234-242.
  • Fan, X. X., Xu, M. Z., Leung, E. L. H., Jun, C., Yuan, Z., & Liu, L. (2020). ROS-Responsive Berberine Polymeric Micelles Effectively Suppressed the Inflammation of Rheumatoid Arthritis by Targeting Mitochondria. Nano-Micro Letters, 12(1), 1-14.
  • Fang, G., Zhang, Q., Pang, Y., Thu, H. E., & Hussain, Z. (2019). Nanomedicines for improved targetability to inflamed synovium for treatment of rheumatoid arthritis: multi-functionalization as an emerging strategy to optimize therapeutic efficacy. Journal of Controlled Release, 303, 181- 208
  • Feng, X., & Chen, Y. (2018). Drug delivery targets and systems for targeted treatment of rheumatoid arthritis. Journal of drug targeting, 26(10), 845- 857
  • Fiehn, C., Muller-Ladner, U., Gay, S., Krienke, S., Freudenberg-Konrad, S., Funk, J., ... & Wunder, A. (2004). Albumin-coupled methotrexate (MTX-HSA) is a new anti-arthritic drug which acts synergistically to MTX. Rheumatology, 43(9), 1097-1105.
  • Gao, Y., Lim, J., Teoh, S. H., & Xu, C. (2015). Emerging translational research on magnetic nanoparticles for regenerative medicine. Chemical Society reviews, 44(17), 6306-6329.
  • Garg, N. K., Sharma, G., Singh, B., Nirbhavane, P., Tyagi, R. K., Shukla, R., & Katare, O. P. (2017). Quality by Design (QbD)-enabled development of aceclofenac loaded-nano structured lipid carriers (NLCs): An improved dermatokinetic profile for inflammatory disorder (s). International Journal of pharmaceutics, 517(1- 2), 413-431.
  • Goenka, S., Sant, V., & Sant, S. (2014). Graphene- based nanomaterials for drug delivery and tissue engineering. Journal of Controlled Release, 173, 75-88.
  • Gouveia, V. M., Lima, S. C. A., Nunes, C., & Reis, S. (2015). Non-biologic nanodelivery therapies for rheumatoid arthritis. Journal of biomedical nanotechnology, 11(10), 1701-1721.
  • Gu, W., Wu, C., Chen, J., & Xiao, Y. (2013). Nanotechnology in the targeted drug delivery for bone diseases and bone regeneration. International journal of nanomedicine, 8, 2305.
  • Jafari, M., Soltani, M., Naahidi, S., N Karunaratne, D., & Chen, P. (2012). Nonviral approach for targeted nucleic acid delivery. Current medicinal chemistry, 19(2), 197-208.
  • Jeon, O. H., & Elisseeff, J. (2016). Orthopedic tissue regeneration: cells, scaffolds, and small molecules. Drug Delivery and Translational Research, 6(2), 105-120.
  • Kang, C., Jung, E., Hyeon, H., Seon, S., & Lee, D. (2020). Acid-activatable polymeric curcumin nanoparticles as therapeutic agents for osteoarthritis. Nanomedicine: Nanotechnology, Biology and Medicine, 23, 102104.
  • Kapoor, B., Singh, S. K., Gulati, M., Gupta, R., & Vaidya, Y. (2014). Application of liposomes in treatment of rheumatoid arthritis: quo vadis. The scientific world Journal, 2014.
  • Kaur, A., Bhoop, B. S., Chhibber, S., Sharma, G., Gondil, V. S., & Katare, O. P. (2017). Supramolecular nano-engineered lipidic carriers based on diflunisal-phospholipid complex for transdermal delivery: QbD based optimization, characterization, and preclinical investigations for management of rheumatoid arthritis. International Journal of Pharmaceutics, 533(1), 206-224.
  • Kim, K., & Fisher, J. P. (2007). Nanoparticle technology in bone tissue engineering. Journal of drug targeting, 15(4), 241-252.
  • Kim, M. J., Park, J. S., Lee, S. J., Jang, J., Park, J. S., Back, S. H., ... & Kwon, I. C. (2015). Notch1 targeting siRNA delivery nanoparticles for rheumatoid arthritis therapy. Journal of Controlled Release, 216, 140-148.
  • Kumar, A., Zhang, X., & Liang, X. J. (2013). Gold nanoparticles: emerging paradigm for targeted drug delivery system. Biotechnology advances, 31(5), 593-606.
  • Lawson, T. B., Mäkelä, J. T., Klein, T., Snyder, B. D., & Grinstaff, M. W. (2020). Nanotechnology and Osteoarthritis. Part 2: Opportunities for advanced devices and therapeutics. Journal of Orthopaedic Research®.
  • Lee, H., Lee, M. Y., Bhang, S. H., Kim, B. S., Kim, Y. S., Ju, J. H., ... & Hahn, S. K. (2014). Hyaluronate- gold nanoparticle/tocilizumab complex for the treatment of rheumatoid arthritis. Acs Nano, 8(5), 4790-4798.
  • Li, Y., Cao, J., Han, S., Liang, Y., Zhang, T., Zhao, H., ... & Sun, Y. (2018). ECM based injectable thermo- sensitive hydrogel on the recovery of injured cartilage induced by osteoarthritis. Artificial cells, nanomedicine, and biotechnology, 46(sup2), 152-160.
  • Loffredo, F. S., Pancoast, J. R., Cai, L., Vannelli, T., Dong, J. Z., Lee, R. T., & Patwari, P. (2014). Targeted delivery to cartilage is critical for in vivo efficacy of insulin-like growth factor 1 in a rat model of osteoarthritis. Arthritis & rheumatology, 66(5), 1247-1255.
  • Lu, J. W., Yang, F., Ke, Q. F., Xie, X. T., & Guo, Y. P. (2018). Magnetic nanoparticles modified- porous scaffolds for bone regeneration and photothermal therapy against tumors. Nanomedicine: Nanotechnology, Biology and Medicine, 14(3), 811-822.
  • Lungwitz, U., Breunig, M., Blunk, T., & Göpferich, A. (2005). Polyethylenimine-based non-viral gene delivery systems. European Journal of Pharmaceutics and Biopharmaceutics, 60(2), 247-266.
  • M Cardoso, M., N Peca, I., & CA Roque, A. (2012). Antibody-conjugated nanoparticles for therapeutic applications. Current medicinal chemistry, 19(19), 3103-3127.
  • Mackey, P. A., & Whitaker, M. D. (2015). Osteoporosis: a therapeutic update. The Journal for Nurse Practitioners, 11(10), 1011-1017.
  • Maudens, P., Seemayer, C. A., Thauvin, C., Gabay, C., Jordan, O., & Allémann, E. (2018). Nanocrystal- polymer particles: extended delivery carriers for osteoarthritis treatment. Small, 14(8), 1703108
  • Meneksedag-Erol, D., Tang, T., & Uludağ, H. (2018). Mechanistic insights into the role of glycosaminoglycans in delivery of polymeric nucleic acid nanoparticles by molecular dynamics simulations. Biomaterials, 156, 107- 120.
  • Mohammadinejad, R., Ashrafizadeh, M., Pardakhty, A., Uzieliene, I., Denkovskij, J., Bernotiene, E., ... & Mobasheri, A. (2020). Nanotechnological Strategies for Osteoarthritis Diagnosis, Monitoring, Clinical Management, and Regenerative Medicine: Recent Advances and Future Opportunities. Current Rheumatology Reports, 22(4).
  • Mohammed, M. A., Syeda, J., Wasan, K. M., & Wasan, E. K. (2017). An overview of chitosan nanoparticles and its application in non- parenteral drug delivery. Pharmaceutics, 9(4), 53.
  • Monteiro, N., Martins, A., Reis, R. L., & Neves, N. M. (2014). Liposomes in tissue engineering and regenerative medicine. Journal of the Royal Society Interface, 11(101), 20140459.
  • Monteiro, N., Martins, A., Reis, R. L., & Neves, N. M. (2015). Nanoparticle-based bioactive agent release systems for bone and cartilage tissue engineering. Regenerative Therapy, 1, 109-118.
  • Mota, A. H., Direito, R., Carrasco, M. P., Rijo, P., Ascensão, L., Viana, A. S., ... & Kuplennik, N. (2019). Combination of hyaluronic acid and PLGA particles as hybrid systems for viscosupplementation in osteoarthritis. International journal of pharmaceutics, 559, 13- 22.
  • Nasiri, N., Hosseini, S., Alini, M., Khademhosseini, A., & Eslaminejad, M. B. (2019). Targeted cell delivery for articular cartilage regeneration and osteoarthritis treatment. Drug discovery today, 24(11), 2212-2224.
  • Nitta, S. K., & Numata, K. (2013). Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering. International journal of molecular sciences, 14(1), 1629-1654.
  • Oliveira, F. C., Carvalho, J. O., Gusmão, S. B. S., de Sousa Gonçalves, L., Mendes, L. M. S., Freitas, S. A. P., ... & Lobo, A. O. (2019). High loads of nano- hydroxyapatite/graphene nanoribbon composites guided bone regeneration using an osteoporotic animal model. International journal of nanomedicine, 14, 865.
  • Pi, Y., Zhang, X., Shao, Z., Zhao, F., Hu, X., & Ao, Y. (2015). Intra-articular delivery of anti-Hif-2α siRNA by chondrocyte-homing nanoparticles to prevent cartilage degeneration in arthritic mice. Gene therapy, 22(6), 439-448.
  • Pinelli, F., Ortolà, Ó. F., Makvandi, P., Perale, G., & Rossi, F. (2020). In vivo drug delivery applications of nanogels: a review. Nanomedicine, 15(27), 2707-2727.
  • Pirmardvand Chegini, S., Varshosaz, J., & Taymouri, S. (2018). Recent approaches for targeted drug delivery in rheumatoid arthritis diagnosis and treatment. Artificial cells, nanomedicine, and biotechnology, 46(sup2), 502-514.
  • Prasad, L. K., O'Mary, H., & Cui, Z. (2015). Nanomedicine delivers promising treatments for rheumatoid arthritis. Nanomedicine, 10(13), 2063-2074.
  • Puri, A., Loomis, K., Smith, B., Lee, J. H., Yavlovich, A., Heldman, E., & Blumenthal, R. (2009). Lipid- based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Critical Reviews™ in Therapeutic Drug Carrier Systems, 26(6).
  • Qayoom, I., Teotia, A. K., & Kumar, A. (2019). Nanohydroxyapatite Based Ceramic Carrier Promotes Bone Formation in a Femoral Neck Canal Defect in Osteoporotic Rats. Biomacromolecules, 21(2), 328-337.
  • Rabiei, M., Kashanian, S., Samavati, S. S., Derakhshankhah, H., Jamasb, S., & McInnes, S. J. (2020). Nanotechnology application in drug delivery to Osteoarthritis (OA), Rheumatoid arthritis (RA), and Osteoporosis (OSP). Journal of Drug Delivery Science and Technology, 102011.
  • Ricker, A., Liu-Snyder, P., & Webster, T. J. (2008). The influence of nano MgO and BaSO4 particle size additives on properties of PMMA bone cement. International Journal of Nanomedicine, 3(1), 125.
  • Roy, K., Kanwar, R. K., & Kanwar, J. R. (2015). Molecular targets in arthritis and recent trends in nanotherapy. International journal of nanomedicine, 10, 5407.
  • Sabokbar, A., Fujikawa, Y., Murray, D. W., & Athanasou, N. A. (1997). Radio-opaque agents in bone cement increase bone resorption. The Journal of bone and joint surgery. British volume, 79(1), 129-134.
  • Sacchetti, C., Liu-Bryan, R., Magrini, A., Rosato, N., Bottini, N., & Bottini, M. (2014). Polyethylene- glycol-modified single-walled carbon nanotubes for intra-articular delivery to chondrocytes. ACS nano, 8(12), 12280-12291.
  • Saiz, E., Zimmermann, E. A., Lee, J. S., Wegst, U. G., & Tomsia, A. P. (2013). Perspectives on the role of nanotechnology in bone tissue engineering. Dental Materials, 29(1), 103-115.
  • Samarasinghe, R. M., Kanwar, R. K., & Kanwar, J. R. (2014). The effect of oral administration of iron saturated-bovine lactoferrin encapsulated chitosan-nanocarriers on osteoarthritis. Biomaterials, 35(26), 7522-7534.
  • Schultz, C. (2019). Targeting the extracellular matrix for delivery of bioactive molecules to sites of arthritis. British journal of pharmacology, 176(1), 26-37.
  • Scott, T. G., Blackburn, G., Ashley, M., Bayer, I. S., Ghosh, A., Biris, A. S., & Biswas, A. (2013). Advances in bionanomaterials for bone tissue engineering. Journal of nanoscience and nanotechnology, 13(1), 1-22.
  • Sezlev Bilecen, D., Uludag, H., & Hasirci, V. (2019). Development of PEI-RANK siRNA complex loaded PLGA nanocapsules for the treatment of osteoporosis. Tissue Engineering Part A, 25(1-2), 34-43.
  • Shen, S. C., Letchmanan, K., Chow, P. S., & Tan, R. B. H. (2019). Antibiotic elution and mechanical property of TiO2 nanotubes functionalized PMMA-based bone cements. Journal of the Mechanical Behavior of Biomedical Materials, 91, 91-98.
  • Song, F., Li, X., Wang, Q., Liao, L., & Zhang, C. (2015). Nanocomposite hydrogels and their applications in drug delivery and tissue engineering. Journal of biomedical nanotechnology, 11(1), 40-52.
  • Suk, J. S., Xu, Q., Kim, N., Hanes, J., & Ensign, L. M. (2016). PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Advanced drug delivery reviews, 99, 28-51.
  • Syed, A., & Devi, V. K. (2019). Potential of targeted drug delivery systems in treatment of rheumatoid arthritis. Journal of Drug Delivery Science and Technology, 53, 101217.
  • Tarner, I. H., & Müller-Ladner, U. (2008). Drug delivery systems for the treatment of rheumatoid arthritis. Expert opinion on drug delivery, 5(9), 1027-1037.
  • Trujillo-Nolasco, R. M., Morales-Avila, E., Ocampo- García, B. E., Ferro-Flores, G., Gibbens-Bandala, B. V., Escudero-Castellanos, A., & Isaac-Olive, K. (2019). Preparation and in vitro evaluation of radiolabeled HA-PLGA nanoparticles as novel MTX delivery system for local treatment of rheumatoid arthritis. Materials Science and Engineering: C, 103, 109766.
  • Volpi, N. (2011). Anti-inflammatory activity of chondroitin sulphate: new functions from an old natural macromolecule. Inflammopharmacology, 19(6), 299-306.
  • Walmsley, G. G., McArdle, A., Tevlin, R., Momeni, A., Atashroo, D., Hu, M. S., ... & Wan, D. C. (2015). Nanotechnology in bone tissue engineering. Nanomedicine: Nanotechnology, Biology and Medicine, 11(5), 1253-1263.
  • Wang, P., Perche, F., Logeart-Avramoglou, D., & Pichon, C. (2019). RNA-based therapy for osteogenesis. International journal of pharmaceutics, 569, 118594.
  • Wang, Q., Chen, B., Ma, F., Lin, S., Cao, M., Li, Y., & Gu, N. (2017). Magnetic iron oxide nanoparticles accelerate osteogenic differentiation of mesenchymal stem cells via modulation of long noncoding RNA INZEB2. Nano Research, 10(2), 626-642.
  • Wang, Q., Li, Y., Chen, X., Jiang, H., Zhang, Z., & Sun, X. (2019). Optimized in vivo performance of acid-liable micelles for the treatment of rheumatoid arthritis by one single injection. Nano Research, 12(2), 421-428
  • Webster, T. J., & Ahn, E. S. (2006). Nanostructured biomaterials for tissue engineering bone. In Tissue Engineering II (pp. 275-308). Springer, Berlin, Heidelberg.
  • Wei, D., Jung, J., Yang, H., Stout, D. A., & Yang, L. (2016). Nanotechnology treatment options for osteoporosis and its corresponding consequences. Current osteoporosis reports, 14(5), 239-247.
  • Xiao, S., & Chen, L. (2020). The emerging landscape of nanotheranostic-based diagnosis and therapy for osteoarthritis. Journal of Controlled Release.
  • Yallapu, M. M., Nagesh, P. K. B., Jaggi, M., & Chauhan, S. C. (2015). Therapeutic applications of curcumin nanoformulations. The AAPS journal, 17(6), 1341-1356.
  • Yang, M., Ding, J., Feng, X., Chang, F., Wang, Y., Gao, Z., ... & Chen, X. (2017). Scavenger receptor-mediated targeted treatment of collagen- induced arthritis by dextran sulfate- methotrexate prodrug. Theranostics, 7(1), 97.
  • Zarins, J., Pilmane, M., Sidhoma, E., Salma, I., & Locs, J. (2019). The role of strontium enriched hydroxyapatite and tricalcium phosphate biomaterials in osteoporotic bone regeneration. Symmetry, 11(2), 229.
  • Zha, L., Banik, B., & Alexis, F. (2011). Stimulus responsive nanogels for drug delivery. Soft Matter, 7(13), 5908-5916.
  • Zhang, Q., Dehaini, D., Zhang, Y., Zhou, J., Chen, X., Zhang, L., ... & Zhang, L. (2018). Neutrophil membrane-coated nanoparticles inhibit synovial inflammation and alleviate joint damage in inflammatory arthritis. Nature nanotechnology, 13(12), 1182-1190.
  • Zhang, S., Wu, L., Cao, J., Wang, K., Ge, Y., Ma, W., ... & Shen, S. (2018). Effect of magnetic nanoparticles size on rheumatoid arthritis targeting and photothermal therapy. Colloids and Surfaces B: Biointerfaces, 170, 224-232.

Cite this article

    APA : Qaiser, F., Ibrahim, M., & Mazhar, R. (2020). Nanotechnology: A New Hope for the Cure of Osteoarthritis, Osteoporosis and Rheumatoid Arthritis. Global Pharmaceutical Sciences Review, V(I), 25-39. https://doi.org/10.31703/gpsr.2020(V-I).04
    CHICAGO : Qaiser, Fariah, Muhammad Ibrahim, and Rabia Mazhar. 2020. "Nanotechnology: A New Hope for the Cure of Osteoarthritis, Osteoporosis and Rheumatoid Arthritis." Global Pharmaceutical Sciences Review, V (I): 25-39 doi: 10.31703/gpsr.2020(V-I).04
    HARVARD : QAISER, F., IBRAHIM, M. & MAZHAR, R. 2020. Nanotechnology: A New Hope for the Cure of Osteoarthritis, Osteoporosis and Rheumatoid Arthritis. Global Pharmaceutical Sciences Review, V, 25-39.
    MHRA : Qaiser, Fariah, Muhammad Ibrahim, and Rabia Mazhar. 2020. "Nanotechnology: A New Hope for the Cure of Osteoarthritis, Osteoporosis and Rheumatoid Arthritis." Global Pharmaceutical Sciences Review, V: 25-39
    MLA : Qaiser, Fariah, Muhammad Ibrahim, and Rabia Mazhar. "Nanotechnology: A New Hope for the Cure of Osteoarthritis, Osteoporosis and Rheumatoid Arthritis." Global Pharmaceutical Sciences Review, V.I (2020): 25-39 Print.
    OXFORD : Qaiser, Fariah, Ibrahim, Muhammad, and Mazhar, Rabia (2020), "Nanotechnology: A New Hope for the Cure of Osteoarthritis, Osteoporosis and Rheumatoid Arthritis", Global Pharmaceutical Sciences Review, V (I), 25-39
    TURABIAN : Qaiser, Fariah, Muhammad Ibrahim, and Rabia Mazhar. "Nanotechnology: A New Hope for the Cure of Osteoarthritis, Osteoporosis and Rheumatoid Arthritis." Global Pharmaceutical Sciences Review V, no. I (2020): 25-39. https://doi.org/10.31703/gpsr.2020(V-I).04