01 Pages : 1-15
http://dx.doi.org/10.31703/gpsr.2023(VIII-IV).01 10.31703/gpsr.2023(VIII-IV).01 Published : Dec 2023Exploring The Therapeutic Potential of the Uricase Enzyme in Modern Medicine
Uricase, which is an enzyme that is involved in the metabolism of purines, has recently attracted a lot of attention in modern medicine. This article offers a comprehensive and detailed overview of the use of uricase in different fields of medicine. It describes what uricase is and its function in the metabolic process regarding uric acid and its relevance in medicine. New directions in the application of uricase in the treatment of diseases such as gout are explained. Furthermore, the article discusses the concerns and issues that research and clinical applications face when introducing uricase and attempting to enhance its efficacy and security. The conclusion brings the focus to uricase for it to be emphasized as a therapeutic agent of the 21st century with development and clinical trials exploration being necessary.
-
Uricase Enzyme, Therapeutic Potential, Modern Medicine, Hyperuricemia, Gout, Biomarker, Metabolic Syndrome, Clinical Implementation, Efficacy and Safety, Clinical Trials
-
(1) Sidra Sarwar
Graduate Scholar, Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan.
(2) Areej Ali
Graduate Scholar, Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan.
(3) Mariam Ahmed
Graduate Scholar, Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan.
(4) Minahil Qadeer
Graduate Scholar, Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan.
(5) Faiza Mushtaq
Graduate Scholar, Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan.
(6) Muhammad Asim Latif
Graduate Scholar, Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan.
-
Abdel-Fattah, Y. R., Saeed, H., Gohar, Y. M., & Elbaz, M. (2005). Improved production of Pseudomonas aeruginosa uricase by optimization of process parameters through statistical experimental designs. Process Biochemistry, 40(5), 1707–1714. https://doi.org/10.1016/j.procbio.2004.06.048
- Anupama, & Ravindra, P. (2000). Value-added food: Biotechnology Advances, 18(6), 459–479. https://doi.org/10.1016/s0734-9750(00)00045-8
- Chen, J., Jiang, N., Wang, T., Xie, G., Zhang, Z., Li, H., Yuan, J., Sun, Z., & Chen, J. (2016). DNA shuffling of the uricase gene leads to a more "human-like" chimeric uricase with increased uricolytic activity. International Journal of Biological Macromolecules, 82, 522–529. https://doi.org/10.1016/j.ijbiomac.2015.10.053
- Chen, Z., Wang, Z., He, X., Guo, X., Li, W., & Zhang, B. (2008). Uricase production by a recombinant Hansenula polymorpha strain harboring Candida utilis uricase gene. Applied Microbiology and Biotechnology, 79(4). https://doi.org/10.1007/s00253-008-1472-8
- Chiu, Y., Hsu, T., Huang, C., & Hsu, C. (2021). Molecular Elucidation of a Urate Oxidase from Deinococcus radiodurans for Hyperuricemia and Gout Therapy. International Journal of Molecular Sciences, 22(11), 5611. https://doi.org/10.3390/ijms22115611
- Clavijo, V., Torres‐Acosta, M. A., Vives, M., & Rito‐Palomares, M. (2019). Aqueous two-phase systems for the recovery and purification of phage therapy products: Recovery of salmonella bacteriophage ϕSan23 as a case study. Separation and Purification Technology, 211, 322–329. https://doi.org/10.1016/j.seppur.2018.09.088
-
Croughan, M. S., Konstantinov, K., & Cooney, C. L. (2015). The future of industrial bioprocessing: Batch or continuous? Biotechnology and Bioengineering, 112(4), 648–651. https://doi.org/10.1002/bit.25529
- Dako, É., Bernier, A., Dadié, A., & Jankowski, C. K. (2012). The Problems Associated with Enzyme Purification. In InTech eBooks. https://doi.org/10.5772/33307
- Dako, É., Bernier, A., Dadié, A., & Jankowski, C. K. (2012b). The Problems Associated with Enzyme Purification. In InTech eBooks. https://doi.org/10.5772/33307
- Dudala, S. S., Venkateswarulu, T., A, V. N., & Dulla, J. B. (2023). Modeling and optimization of uricase production from a novel Pseudomonas mosselii using response surface methodology and artificial neural network. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-023-04468-3
- Dudala, S. S., Venkateswarulu, T., Alugunulla, V. N., Krupanidhi, S., & Dulla, J. B. (2023). Enhanced uricase production using novel Escherichia marmotae strain (DJDSS001): Characterization and optimization. Biocatalysis and Agricultural Biotechnology, 48, 102649. https://doi.org/10.1016/j.bcab.2023.102649
- El‐Naggar, N. E., Haroun, S. A., El-Weshy, E. M., Metwally, E. A., & Sherief, A. A. (2019). Mathematical modeling for bioprocess optimization of a protein drug, uricase, production by Aspergillus welwitschiae strain 1–4. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-49201-1
- Garay, R. P., El-Gewely, M. R., Labaune, J., & Richette, P. (2012). Therapeutic perspectives on uricases for gout. Joint Bone Spine, 79(3), 237–242. https://doi.org/10.1016/j.jbspin.2012.01.004
- Guajardo, N., & Schrebler, R. (2023). Upstream and downstream bioprocessing in enzyme technology. Pharmaceutics, 16(1), 38. https://doi.org/10.3390/pharmaceutics16010038
- Guttmann, A., Krasnokutsky, S., Pillinger, M. H., & Berhanu, A. (2017). Pegloticase in gout treatment - safety issues, latest evidence and clinical considerations. Therapeutic Advances in Drug Safety, 8(12), 379–388. https://doi.org/10.1177/2042098617727714
- Iqbal, M., Tao, Y., Xie, S., Zhu, Y., Chen, D., Wang, X., Huang, L., Peng, D., Sattar, A., Shabbir, M. a. B., Hussain, H., Ahmed, S., & Zhang, Y. (2016b). Aqueous two-phase system (ATPS): an overview and advances in its applications. Biological Procedures Online, 18(1). https://doi.org/10.1186/s12575-016-0048-8
- Khade, S., Srivastava, S. K., & Tripathi, A. D. (2016). Production of clinically efficient uricase enzyme induced from different strains of Pseudomonas aeruginosa under submerged fermentations and their kinetic properties. Biocatalysis and Agricultural Biotechnology, 8, 139–145. https://doi.org/10.1016/j.bcab.2016.09.005
- Khade, S., Srivastava, S. K., Kumar, K., Sharma, K., Goyal, A., & Tripathi, A. D. (2018). Optimization of clinical uricase production by Bacillus cereus under submerged fermentation, its purification and structure characterization. Process Biochemistry, 75, 49–58. https://doi.org/10.1016/j.procbio.2018.09.010
- Konak, Ü. İ., Turhan, İ., & Certel, M. (2014). Chromatographic methods in protein purification. Akademik Gida, 12(2), 79–87. https://www.cabdirect.org/cabdirect/abstract/20143348265
- Mirzaeinia, Somayyeh & Pazhang, Mohammad & Imani, Mehdi. (2017). Investigation of the stability of uricase from Aspergillus flavus and its stabilization by Glucose. Biotechnology Tarbiat Modares University. 8. 50-60.
- Nanda, P., & Babu, P. J. (2017). Solid phase PEGylation of Uricase. Materials Today: Proceedings, 4(9), 10494–10497. https://doi.org/10.1016/j.matpr.2017.06.407
- Nyborg, A. C., Ward, C., Zacco, A., Chacko, B., Grinberg, L., Geoghegan, J. C., Bean, R., Wendeler, M., Bartnik, F., O’Connor, E., Gruia, F., Iyer, V., Feng, H., Roy, V., Berge, M., Miner, J. N., Wilson, D. M., Zhou, D., Nicholson, S. M., . . . Baca, M. (2016). A Therapeutic Uricase with Reduced Immunogenicity Risk and Improved Development Properties. PloS One, 11(12), e0167935. https://doi.org/10.1371/journal.pone.0167935
- Nyborg, A. C., Ward, C., Zacco, A., Chacko, B., Grinberg, L., Geoghegan, J. C., Bean, R., Wendeler, M., Bartnik, F., O’Connor, E., Gruia, F., Iyer, V., Feng, H., Roy, V., Berge, M., Miner, J. N., Wilson, D. M., Zhou, D., Nicholson, S. M., . . . Baca, M. (2016b). A Therapeutic Uricase with Reduced Immunogenicity Risk and Improved Development Properties. PloS One, 11(12), e0167935. https://doi.org/10.1371/journal.pone.0167935
- Nyborg, A. C., Ward, C., Zacco, A., Chacko, B., Grinberg, L., Geoghegan, J. C., Bean, R., Wendeler, M., Bartnik, F., O’Connor, E., Gruia, F., Iyer, V., Feng, H., Roy, V., Berge, M., Miner, J. N., Wilson, D. M., Zhou, D., Nicholson, S. M., & Baca, M. (2016c). A Therapeutic Uricase with Reduced Immunogenicity Risk and Improved Development Properties. PloS One, 11(12), e0167935. https://doi.org/10.1371/journal.pone.0167935
- Pierzynowska, K., Deshpande, A., Mosiichuk, N. M., Terkeltaub, R., Szczurek, P., Salido, E., Pierzynowski, S., & Grujić, D. (2020). Oral treatment with an engineered uricase, ALLN-346, reduces hyperuricemia, and uricosuria in urate Oxidase-Deficient mice. Frontiers in Medicine, 7. https://doi.org/10.3389/fmed.2020.569215
- Pustake, S. O., Bhagwat, P., Pillai, S., & Dandge, P. B. (2022). Purification and characterisation of uricase from Bacillus subtilis SP6. Process Biochemistry, 113, 55–61. https://doi.org/10.1016/j.procbio.2021.12.010
- Roman, Y. M. (2023). The Role of Uric Acid in Human Health: Insights from the Uricase Gene. Journal of Personalized Medicine, 13(9), 1409. https://doi.org/10.3390/jpm13091409
- Roman, Y. M. (2023). The Role of Uric Acid in Human Health: Insights from the Uricase Gene. Journal of Personalized Medicine, 13(9), 1409. https://doi.org/10.3390/jpm13091409
- Schlesinger, N., Padnick‐Silver, L., & LaMoreaux, B. (2022). Enhancing the Response Rate to Recombinant Uricases in Patients with Gout. BioDrugs, 36(2), 95–103. https://doi.org/10.1007/s40259-022-00517-x
- Schlesinger, N., Padnick‐Silver, L., & LaMoreaux, B. (2022b). Enhancing the Response Rate to Recombinant Uricases in Patients with Gout. BioDrugs, 36(2), 95–103. https://doi.org/10.1007/s40259-022-00517-x
- Selvaraj, C., & Vasan, P.T. (2017). Screening, production and optimization of Uricase from P. aeruginosa. European Journal of Biotechnology and Bioscience, 5, 57-61.
- Tan, Q., Wang, N., Yang, H., Zhang, L., Liu, S., Chen, L., Liu, J., Zhang, L., Hu, N., Zhao, C., & Zhang, J. (2010). Characterization, stabilization and activity of uricase loaded in lipid vesicles. International Journal of Pharmaceutics, 384(1–2), 165–172. https://doi.org/10.1016/j.ijpharm.2009.09.036
- Tan, Q., Wang, N., Yang, H., Zhang, L., Liu, S., Chen, L., Liu, J., Zhang, L., Hu, N., Zhao, C., & Zhang, J. (2010). Characterization, stabilization and activity of uricase loaded in lipid vesicles. International Journal of Pharmaceutics, 384(1–2), 165–172. https://doi.org/10.1016/j.ijpharm.2009.09.036
- Tandon, S., Sharma, A., Singh, S., Sharma, S., & Sarma, S. J. (2021). Therapeutic enzymes: Discoveries, production and applications. Journal of Drug Delivery Science and Technology, 63, 102455. https://doi.org/10.1016/j.jddst.2021.102455
- Torres‐Acosta, M. A., Aguilar‐Yáñez, J. M., Rito‐Palomares, M., & Titchener‐Hooker, N. J. (2015). Economic analysis of uricase production under uncertainty: Contrast of chromatographic purification and aqueous two-phase extraction (with and without PEG recycle). Biotechnology Progress, 32(1), 126–133. https://doi.org/10.1002/btpr.2200
- Tran, L., Das, S., Zhao, L., Finn, M. G., & Gaucher, E. A. (2023). Oral Delivery of Nanoparticles Carrying Ancestral Uricase Enzyme Protects against Hyperuricemia in Knockout Mice. Biomacromolecules, 24(5), 2003–2008. https://doi.org/10.1021/acs.biomac.2c01388
- Yang, X., Yuan, Y., Chen, Z., & Liao, F. (2012b). Uricases as therapeutic agents to treat refractory gout: Current states and future directions. Drug Development Research, 73(2), 66–72. https://doi.org/10.1002/ddr.20493
- Zhu, T., Chen, H., Yang, L., Liu, Y., Li, W., & Sun, W. (2021). Characterization and Cys-directed mutagenesis of urate oxidase from Bacillus subtilis BS04. Biologia, 77(1), 291–301. https://doi.org/10.1007/s11756-021-00941-4
Cite this article
-
APA : Sarwar, S., Ali, A., & Ahmed, M. (2023). Exploring The Therapeutic Potential of the Uricase Enzyme in Modern Medicine. Global Pharmaceutical Sciences Review, VIII(IV), 1-15. https://doi.org/10.31703/gpsr.2023(VIII-IV).01
-
CHICAGO : Sarwar, Sidra, Areej Ali, and Mariam Ahmed. 2023. "Exploring The Therapeutic Potential of the Uricase Enzyme in Modern Medicine." Global Pharmaceutical Sciences Review, VIII (IV): 1-15 doi: 10.31703/gpsr.2023(VIII-IV).01
-
HARVARD : SARWAR, S., ALI, A. & AHMED, M. 2023. Exploring The Therapeutic Potential of the Uricase Enzyme in Modern Medicine. Global Pharmaceutical Sciences Review, VIII, 1-15.
-
MHRA : Sarwar, Sidra, Areej Ali, and Mariam Ahmed. 2023. "Exploring The Therapeutic Potential of the Uricase Enzyme in Modern Medicine." Global Pharmaceutical Sciences Review, VIII: 1-15
-
MLA : Sarwar, Sidra, Areej Ali, and Mariam Ahmed. "Exploring The Therapeutic Potential of the Uricase Enzyme in Modern Medicine." Global Pharmaceutical Sciences Review, VIII.IV (2023): 1-15 Print.
-
OXFORD : Sarwar, Sidra, Ali, Areej, and Ahmed, Mariam (2023), "Exploring The Therapeutic Potential of the Uricase Enzyme in Modern Medicine", Global Pharmaceutical Sciences Review, VIII (IV), 1-15
-
TURABIAN : Sarwar, Sidra, Areej Ali, and Mariam Ahmed. "Exploring The Therapeutic Potential of the Uricase Enzyme in Modern Medicine." Global Pharmaceutical Sciences Review VIII, no. IV (2023): 1-15. https://doi.org/10.31703/gpsr.2023(VIII-IV).01